iSCWO: Destruction of Hazardous Wastes #### Transitioning High-Risk R&D into Operational Systems ## Supercritical Water Oxidation - Developed for safe treatment of military wastes - Highest performance hazardous waste disposal system - Transitioned to commercial applications Operational system for destruction of chemical agents for the U.S. Army Commercial system for European customer #### **GA Developing SCWO Since 1992** - Development and testing of SCWO at GA (\$90M) - Delivered Energetics Hydrolysis/ SCWO system to BGCAPP site on schedule and within budget (\$110M) - Development and delivery of iSCWO systems to US Government (\$50M) - Other (\$6M) GA and US Government investment in SCWO/iSCWO totals more than \$250M #### **Technical & Cost Advantages** - Cost competitive with incineration - No airborne particulates - Very low nitrogen oxide, sulfur oxide, and total organic carbon content - Clean water by-product requiring little or no post-treatment - Waste stream testing service before purchase Rapid, complete organic destruction with no pollution abatement system #### **Customer Engagement Process** **Gather Data** - Determine wastes' chemical composition - Define interface, siting and schedule requirements - Define throughput and effluent discharge requirements - Evaluate basic CAPEX and OPEX Finalize Requirements - Decide if testing at GA is required; conduct testing if necessary - Meet with customers to finalize requirements for RFP Develop and Submit Proposal - Scope of equipment supply - Scope of work (installation, checkout/startup, support operations) - Spare parts - Schedule and deliverables ### A Wide Range of Chemicals Successfully Treated with GA Technologies #### **Complex Feeds** Activated carbon (spent)* Adhesives* Aqueous Cleaning Solution* AFFF Antifreeze* Aroclor 1242 Aroclor 1254 Aroclor 1260* Bacillus stearothermophilus (heat resistant spores) Brake fluid* Bran cereal Caprolactum wastewater Casein Chlorinated plastics (shredded)* Class 1.1 solid propellant* Class 1.3 AP-depleted solid propellant Coal Coal waste Corn flakes* Corn oil Corn starch Diesel fuel E. coli. Endotoxin (pyroaen) Aluminum hydroxide* Aluminum oxide sodium Ammonium perchlorate® Ammonium chloride Ammonium nitrate* Ammonium nitrite* Ammonium sulfate Ammonium sulfite* Calcium carbonate Calcium chloride Calcium phosphate Calcium oxide Calcium sulfate Cerium chloride* Copper chloride Aluminum metal Ammonia* Borio acid Bromides Explosives/energetics/propellents (hydrolyzed RDX, TNT. Tetryl, NG, NC)* Fermentation byproducts* Fuel oil GB chemical agent (nest, 'hydrolyzed'*) Gray water* Greases (mixed)* Human waste Hydraulic fluid* Industrial biostudee Ion exchange resins (styrene divinyl benzene) Kerosene* Lube oil (molybdenum disulfide oil)* Malaria antigen Motor oil* Mustard chemical agent (neat. hydrolyzed*) Navy shore-based wastes* Olive oil Organic salts (complex mixtures) **Inorganic Substances** Paint, paint sludges* Paper Hydrochloric acid* Hydroffuoric acid Iron chloride Lead chloride® Lithium sulfate Lithium hydroxide Lead sulfate* Iron oxide* Fluorides Paraffin oil Pesticide manufacturing wastewater Pharmaceutical waste* Photographic developer paste Photographic developer solutions* Polychlorotrifluoroethylene (PCTFE)* Pig manure Propellants (hydrolyzed)* Protein Pulp/paper mill sludge Sewage sludge (black water)* Soil contaminated with organics Sovbean plants Sulfolobus acidocaldarius Transformer oil* Trimsol cutting oil* VX chemical agent (neat. hydrolyzed*) Waste oils (chlorinated and nonchlorinated)* Wheat straw* Wood fibers Yeast Potassium chloride Potassium hydroxide Potassium sulfate Silica Sodium bicarbonate* Sodium carbonate Sodium chloride* Sodium Buoride* Sodium hydroxide* Magnesium nitrate Sodium nitrate Magnesium oxide Sodium nitrite Magnesium phosphate Sodium phosphate* Magnesium sulfate Sodium sulfate* Mercuric chloride Sodium sulfite-Molybdenum disulfide lube oil* Nitrio scid® Phosphoric acid Potassium bicarbonate Potassium carbonate Sulfur, elemental Sufferic acid* Titanium dioxide Zinc chloride* Zinc sulfate* **Organic Chemicals** Dichlorobenzene Dichloroethylene Dichlorophenol Diethanolamine* 4.4-Dichlorobinhenvl Dimethylformamide* (DMMP)* Dimethyl sulfoxide* Dimethyl methyl phosphonate Acetic Acid Acetone Acetylsalicylic acid(aspirin) Adumbran 4[(2-Amino-3, 5-dibromophenyl)methylaminolcyclohexanol Ammonium acetate* Ammonium formate* Ammonium oxalate* Benzene Biphenyl Buanol* Calcium acetate* Carbon tetrachloride* Carboxylic acids Carboxymethyl cellulose Cellulose Cerium Acetate* Chlorinated dibenzo-p-dioxins 6-chloro-2.3,4.5-tetrahydro-3- methyl-1H-3-benzazepine hydrochloride Chlorobenzene* Chloroform* 2-Chlororphenol* o-Chlorotoluene* Cobalt acetate m-Cresol* Cvanide* Cyclohexane DDT Decachlorobiphenyl Dextrose Dibenzofurans 3.5-dibromo-N0cvclohexvl-Nmethyltoluene-,2-diamine Dibutyl phosphate Dichloroacetic acid Dichloroanisole 4,6-denitro-o-cresol 2.4-Dinitrophenol Dinitrotoluene Dipyridamole Disopropyl ethanolamine Diisopropyl ethylamine Ethanol Ethyl acetate* Ethylene chlorohydrin Ethylenediamine tetraacetic acid Ethylene glycol Fluorescein* Freon 22 Giveerol Hexachlorobenzene Hexachlorocyclohexane Hexachlorocyclopentadiene Iron acetate® Isooctane Isopropanol* Lead acetate* Mercaptans Mercaptoethanol Methanol* Methyl acetate* Methyl cellosolve Methylene chloride* Methyl ethyl ketone Methylphosphonic acid (MPA) Monoethanolamine* Nitrobenzene® 2-nitrophenol 4-nitrophenol Nitrotoluene. Octachlorostyrene Octadecanoic acid magnesium salt Paracetamol Pentachlorobenzene Pentachlorobenzonitrile Pentachlorophenol* Pentachloropyridine Phenol Polychlorinated biphenyls (PCB*) Polychlorotrifluoroethylene* Sodium acetate Sodium formate Sodium hexanoate Sodium isethionate* Sodium propionate Sucrose Surfactant Tetrachlorobenzene Tetrachloroethylene* Tetrapropylene H Thiodiglycol* Toluene Tributyl phosphate Trichlorobenzenes 1.1.1-Trichloroethane* 1.1.2-Trichloroethane* Trichloroethylene Trichlorophenol Trifluoroacetic acid 1.3.7-Trymethylxanthine Unsymmetrical dimethyl hydrazine Urea o-Xylene* Zinc acetate® #### iSCWO Release Streams Meet Environmental Requirements | Waste Feed | Gas Release | Liquid Release | |-----------------------|--|---| | Energetics | $\rm O_2$ depleted/CO $_2$ enriched air, water vapor, and small amount of N $_2$ O; organic free | Organic-free water
and sodium salts
depending on
energetic formulation | | Cleaning
Solutions | $\rm O_2$ depleted/CO $_2$ enriched air, water vapor, and small amount of N $_2$ O; organic free | Organic-free water and suspended metallic oxides | | Organics | ${\rm O_2}$ depleted/ ${\rm CO_2}$ enriched air and water vapor; organic free | Organic-free water | | Pharmaceuticals | $\rm O_2$ depleted/ $\rm CO_2$ enriched air and water vapor; organic free | Organic-free water
and dissolved salts
depending on
composition of waste | | Fertilizers | $\rm O_2$ depleted/CO $_2$ enriched air, water vapor, and small amount of N $_2$ O; organic free | Organic-free water
and dissolved
phosphate and sulfate
salts depending on
fertilizer type | # iSCWO Unit Customization Level Dependent on Waste Type | No Customization | Low-Level Customization | Mid-Level Customization | |--|---|---| | Petrochemicals Hydrocarbons Organic bases Organics with sulfur Dyes and Pigments Pharmaceuticals Energetics Paints Fertilizers | Metals treatment Mining runoff Organics with metals Plastics Organic acids Organics with salts System modifications Salt processing Filters Upgraded feed pumps | Coal products Ceramic processes Poultry/pig/animal wastes Organics with phosphorus Rubber Pulp/timber processing Wood processing System modifications (Same as low-level plus:) | | | Feed prep systems | Slurry grinding Advanced salts processing Improved liners | #### Proposed Two-Phase Implementation Program Phase 1 : Testing and Scoping Assessment Phase 2 : iSCWO Business Relationship - Identify candidate waste streams - Define throughput and effluent discharge requirements - Perform tests at GA - Evaluate results - Conduct scoping assessment to determine extent of application - Develop business plan - GA provides all components, then assembles, programs automated controls/HMI and tests units for sale - GA provides logistics support and training - Possible joint venture relationship #### Summary - iSCWO is fully capable of destroying a wide range of pumpable hazardous wastes to environmental standards - The iSCWO system is a highly competitive commercial product with wide application - GA provides value priced waste testing capabilities for customers – know before you buy